Q.P. Code: 18EC0402

Q.P. (Code	R 18EC0402	18
Rea	No	•	
neg.	CII	7	
	511	(AUTONOMOUS)	
		B.Tech II Year I Semester Supplementary Examinations Feb-2021	
		DIGITAL SYSTEM DESIGN	
		(Electronics & Communication Engineering)	
Time:	3 ho	Max. Marks	s: 60
		$\frac{PART-A}{PART-A}$	
1	9	(Answer all the Questions $5 \times 2 = 10$ Marks) Show that $(X + V' + XV)(X + V')(X'V) = 0$	2M
1	a h	Find the minterms of the given Boolean expressions.	2M
	N	$F=C_1D+ABC_1+ABD_1+A_1B_1D.$	
	c	Draw the circuit of ring counter.	2M
	d	What are the advantages of PLDs.	2M
	e	Write a VHDL Program for 1x4 DEMUX in Dataflow Model.	2M
		$\frac{\mathbf{PART-B}}{(A \text{ nerver all Five Units 5 v } 10 = 50 \text{ Merks})}$	
		(Answer an Five Onits 5 x 10 – 50 Marks)	
2	9	Convert the following to binary and then to gray code	5M
4	a	i) $(1111)_{16}$ ii) (BC54)_{16} iii) $(237)_8$ iv) $(164)_{10}$ v) $(323)_8$	5111
•	b	State and prove De Morgan's theorem.	5M
		OR	
3	a	Express the Boolean function $F = A + B'C$ as a sum of minterms.	5M
	b	Obtain the Dual and complement to the following Boolean expressions	5M
		1) $F = AB + A (B + C) + B' (B + D)$::) $F = A'B + A'B + C' + A'B + C + A'B + C'D'E$	
		$II) \Gamma - A B + A B C + A B C D + A B C D E$	
4	9	Write the design procedure for combinational circuit	5M
· · ·	a b	Simplify $F(A,B,C,D) = \Sigma (4,5,6,7,12,13,14) + d(1,9,11,15)$ using K-map.	5M
		OR	
5	a	Minimize the given Boolean function, F (A, B,C,D) = Σ m(0,1,2,3,6,7,13,15) using	5M
		Tabulation method and implement it using basic gates.	
	b	Design & implement the Full Adder.	5M
		UNIT-III	
6	a	What is the need for Master Slave JK FF and explain its operation with neat diagrams.	5M
	b	Design and implement a 2 bit Up-Down Counter using JK FF's.	3 [V]
7	я	Draw the logic diagram of a $IK - flip flop and explain its operation$	6M
	b	Explain the operation of Pseudo Random Binary Sequence Generator with a neat	4M
		diagram.	
		UNIT-IV	
8	a	Briefly introduce the content addressable memory.	6M
	b	Implement the following functions using a PLA	4M
		$f1(w,x,y)=\Sigma m(3,5,6,7).$	
0	9	Explain the architecture of PLA	5M
,	a h	Generate the following Boolean function using PAL with 4 inputs and 4 outputs	5M
		i)Y3= a'bc'd+a'bcd'+abc'd	

(ii)Y2=a'bcd'+a'bcd+abcd

Q.P. Code: 18EC0402			K19
		UNIT-V	
10	a	Explain in detail different modeling styles of VHDL with suitable examples.	5M
	b	Write a VHDL program for Full adder.	5M
		OR	
11	a	Explain the structure of a VHDL program.	5M
	b	Draw and explain in detail the VHDL design flow.	5M

END